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Abstract

Visual textures can be characterized by their
color, shape, periodicity, and other attributes
that can often be described using natural lan-
guage. In this paper we study the problem
of describing detailed properties of visual tex-
tures on a novel dataset containing rich de-
scriptions of textures. We evaluate different
deep learning approaches for mapping visual
features to natural language on this dataset and
find that these models are limited in their abil-
ity to handle compositionality. Our dataset
also allows us to generate natural language ex-
planations of what discriminative features are
learned by deep networks for fine-grained cat-
egorization, where texture plays a key role in
discrimination.

1 Introduction

Texture is ubiquitous and provides useful cues for
a wide range of visual recognition tasks. We rely
on texture for estimating material properties of
surfaces, for fine-grained discrimination between
objects of similar shape, and even for generating
realistic imagery in computer graphics applica-
tions. This reliance is also mimicked by deep net-
works trained on current computer vision datasets
which often rely on texture properties for discrim-
ination. Texture is localized and more easily mod-
eled than, for example, shape that is affected by
pose, viewpoint, or occlusion. Despite its impor-
tance, there has been limited work on describing
detailed properties of texture using natural lan-
guage.

We introduce a new dataset containing rich nat-
ural language descriptions of textures taken from
the Describable Textures Dataset (9). Our dataset,
called the Describable Textures Dataset in Detail,
or DTD?, contains several descriptions of each im-
age obtained by crowdsourcing and vastly extends
the 47 attributes present in the original dataset. As
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Figure 1: We introduce the Describable Textures

Dataset in Detail (DTD?), consisting of texture images
with rich natural language descriptions. Attributes in-
cluded in these descriptions reflect multiple aspects of
visual texture, including color, material, pattern, tactile
texture, and style.

seen in Figure 1, these descriptions contain a wide
range of words that describe the color of the ele-
ments within the image, their shape, size, spacing,
and other high-level perceptual properties.

The domain of textures is rich and poses a
number of challenges for compositional language
modeling. For example, to estimate the color of
dots of dotted texture, the model must learn to as-
sociate the color to the foreground dots and not the
background. We investigate off-the-shelf discrim-
inative and generative models for mapping image
features to attribute phrases and evaluate their per-
formance on this dataset. We also experiment with
two bilinear CNN- and NLP-based encoder mod-
els that aim to solve some of the difficulties in
compositional language modeling. We find that
the baseline classification model performs the best
on our retrieval tasks, indicating that our recall
metrics do not benefit from incorporating natural
language processing techniques into training the
models. The current approaches we investigated
are able to retrieve relevant phrases for most im-
ages, even some relevant phrases that are not in
the ground truth. Retrieving images that corre-



Mercury, liquid, shiny, light blue background,
different size bubbles.

Bubbles, sky blue color, foam, several bubbles.
Blue, white, bubbly, small, shiny.

Wet, tingling, clear circles.

Bubbles of water.

Meshed, netted, fenced, silver, metallic.

Metallic item, diamond shaped, red background,
multiple number, equal spaced, white color.

Grey meshed honeycomb wire, symmetrical.
Meshed pattern, red background, with white design.
Wired mesh red background.

Woolen threads knitted for makmg cloth.

Roped lines, braided rope, intertwined yarn.
White, knitted, parallel, rough, woven.
Braided, knots, intertwined, interlaced, strings.
White knitted wool braided with black strings.

Animal print, tiger print, striped black lines on light
brown background.

Striped, lined, banded, vertical, tiger stripes, black,
orange, white.

Brown, black, lined, strips, strokes.

Animal fur, tiger striped.
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Figure 2: Four example texture images and their natural language descriptions from our new Describable Textures
Dataset in Detail (left). A histogram of the most frequently used words in our natural language vocabulary is
also shown (top right), along with a word cloud of the most frequently used words in the dataset (bottom right).

spond to query phrases appeared to be a harder
task, as all of our experimental models struggled
to retrieve meaningful images on many phrases,
particularly compositional phrases such as “green
background.”

We also present an application of our dataset,
where we visualize what discriminative texture
properties are learned by existing deep networks
for fine-grained classification on several natural
domains such as birds, flowers, butterflies, and
fungi. To do this, we generate maximal images for
each category within the dataset using a state-of-
the-art texture-based classifier and describe these
images using models trained on DTD?. We find
that the resulting explanations are well-aligned
with the discriminative attributes of each category
(e.g., the bird “Spotted Catbird” is green and dot-
ted, as seen in Figure 7). Such descriptions of tex-
ture attributes are currently lacking in datasets for
explainable Al
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3 Related Work

Visual texture is a fundamental component of hu-
man and machine perception and has been the fo-
cus for representing image features in the com-
puter vision community for decades (15; 8). Tex-
ture representations have been used in computer
vision for characterizing materials (18; 33; 6),
as understanding materials in images assists with
classic tasks such as object recognition and image



retrieval (25). The SIFT descriptor from (23) gen-
erates image features that are invariant to changes
in scale, rotation, and translation, and have been
widely used for vision tasks over the years. First
and second order pooling statistics of SIFT de-
scriptors as in VLAD (14) and Fisher vectors (28)
have been used for representing textures, along
with (more recently) learned image features from
deep convolutional neural networks (32; 12).

Texture is a crucial factor in the success of fine-
grained recognition models (Lin et al.; 19), espe-
cially where a deep, convolutional neural network
is previously trained for image classification on
a massive dataset (31). There is remarkable evi-
dence that these fine-grained models rely a lot on
texture, and not necessarily shape or ordering of
objects. However, in previous work, we do not
have the right vocabulary to describe these tex-
tures. The current explainable Al models for birds
output phrases such as, “This is a large black bird
with a pointy black beak,” but the fine-grained
model for classifying this bird would actually be
focusing on textures such as small stripes on the
bird’s back that we are not really describing (30).

Describing images using natural language from
the perspective of computer vision and language
generation has been primarily examined in the
context of image captioning (16; 34). For ex-
ample, Show, Attend and Tell (36) is a widely
used neural image captioning model that utilizes
a convolutional neural network encoder and an vi-
sual attention-based LSTM network (13) decoder
to generate descriptions of scene and object im-
ages. Existing vision and language datasets focus
mostly on scenes and objects, such as MS COCO
(20) and Flickr30k (29). However, there is this do-
main of texture images in particular that has been
somewhat neglected in the image captioning liter-
ature.

The Describable Textures Dataset (9) is a rich
dataset of 5640 texture images collected from
Google and Flickr, equally distributed across a
range of 47 different canonical texture categories,
such as “dotted”, “fibrous”, “interlaced”, and
“waffled”. These 47 canonical categories were
selected based off previous work in psychol-
ogy (7) that studied how humans recognize tex-
tures. Though informative for understanding the
general category of a texture image, the Describ-
able Textures Dataset does not include any infor-
mation about the texture’s color or any other dis-

tinguishing characteristics, only the canonical cat-
egory. Specific details on each individual texture
image are lacking, as all images are grouped into
this limited span of canonical categories. This
makes it impossible to distinguish unique texture
characteristics for the images within each canoni-
cal category.

In our work, we aim to address the lack of rich,
detailed information on texture in the literature by
collecting an enhanced natural language dataset of
texture images.

4 Dataset and Tasks

We introduce a new dataset expanding on the orig-
inal Describable Textures Dataset that provides
natural language descriptions to help address the
lack of rich, distinguishing attributes in previous
texture datasets. We call this dataset Describable
Textures Dataset in Detail, or DTDZ2.

4.1 Description collection

We collected our descriptions by presenting each
DTD image and its corresponding DTD texture
category to 5 Amazon Mechanical Turk workers,
asking them to describe the texture spanning most
of the image with as much detail as possible using
natural language. We prompted them to provide
at least 5 descriptive words or phrases in their de-
scription of each texture. Describable aspects of
each image included texture, color, shape, pattern,
style, and material. We allowed the annotators to
include the original DTD attribute in their descrip-
tion if they felt it was appropriate, but to specifi-
cally provide additional details of these attributes
in their descriptions.

Using this strategy, we collected 5 descriptions
(with no less than 5 words each) from 5 different
workers for each texture image, providing detailed
information for each texture. After collecting the
raw annotations, we manually verified that all de-
scriptions for each image were appropriate and
relevant, and we removed descriptions that were
deemed unfit (not a description of the texture).

In this verification step, we found that a select
number of the DTD images were difficult to de-
scribe in more detail without talking about the ob-
ject present in the image, for example, a “waffled”
image containing a breakfast waffle may have had
descriptions that talked about the waffle food item
instead of the texture of the waffle itself. We
elected to remove these unfit descriptions from our



dataset. We excluded images from the dataset with
fewer than 3 valid descriptions after removing the
unfit descriptions. An additional observation we
noticed during this verification process is that the
“freckled” category from DTD contained many
images of human faces, and the “potholed” cat-
egory contained many images of scenes of roads
not necessarily zoomed in on a single texture. As
a result, many of the descriptions we collected
for these two categories described features of the
faces and scenes in the images, not necessarily
a description of a single texture. We elected to
remove the “freckled” and “potholed” categories
from our dataset completely to ensure all images
and descriptions focused on textures only.

4.2 Attribute phrases

From the collected annotations (as demonstrated
in Figure 2), we noticed that people describe var-
ious aspects of texture often by a set of attribute
phrases rather than a complete, grammatically cor-
rect sentence. This is in contrast to standard image
captioning datasets, where images of scenes are
often described using locations of objects. As tex-
ture itself is relatively unordered when spanning
an image, it is interesting to note that permuting
the order of the attribute phrases often does not
affect the description semantics, and can often be
read as a list of unordered phrases. Therefore, we
can further split the collected texture descriptions
into a list of attribute phrases by splitting each de-
scription on commas (°,”). This give us a set of
attribute phrases for each texture image, which we
can concatenate to form a full description.

We conducted an experiment to verify that the
list of attribute phrases could actually be rep-
resented in an unordered fashion without los-
ing meaning when generating texture descriptions.
We randomly sampled 100 texture images from
the dataset, split each image’s description into a
list of attribute phrases, then permuted the order of
the phrases by shuffling them and re-concatenating
with comma separators. For each of the randomly
sampled images, we had three people try to guess
whether the original list of attribute phrases or the
permuted list of attribute phrases was the original
annotation from the dataset - for example, for the
“meshed” image shown in Figure 2, we want to
identify whether “Meshed, netted, fenced, silver,
metallic” (original list) or “Silver, netted, fenced,
metallic, meshed” (permuted list) is the original

# images 5369

# unique words 827

# unique phrases 940

# descriptions per image 4.6

# attribute phrases per image | 18.5
# images train 3212

# images val 791
# images test 1366

Table 1: Important statistics for the Describable Tex-
tures Dataset in Detail (DTD?).

annotation. Our experiment showed that people
were only able to identify the correct original an-
notation around 50% of the time, indicating that
it is essentially random chance. Hence, this con-
firmed our hypothesis that our texture descriptions
can be represented as an unordered list of phrases
without losing significant semantic meaning.

4.3 Dataset statistics

The final Describable Textures Dataset in Detail
contains 5369 texture images, with an average of
4.6 descriptions (18.5 attribute phrases) per image.
The whole dataset contains 22854 unique attribute
phrases and 7681 unique word types. For our ex-
periments, we used attribute phrases that occur in
at least 10 different images across DTD?. After
this filtering, we have 940 unique phrases and 827
unique words. A summary of our experimental
dataset statistics is shown in Table 1.

4.4 Tasks

For our tasks, we have created a train, validation,
and test benchmark for this dataset. Each split
contains the same proportion of DTD attributes
for an even distribution of texture images, ran-
domly sampled for each attribute (stratified sam-
pling). 60% of the images for each DTD attribute
are assigned to the training set, 15% to validation,
and 25% to test. Table 1 shows the distribution of
images across our train, validation, and test sets.
We use these splits to train and evaluate our mod-
els on various tasks.

On top of our new dataset, we propose a set of
retrieval and generation tasks as follows:

Image to phrase retrieval: Given an image, we
retrieve the attribute phrases from DTD? that best
describe the texture in the image. We can evaluate
how well different models perform on our test im-
ages by calculating the fop-k recall: the percentage



of ground-truth attribute phrases that are included
in the k retrieved phrases. As many of the 22854
unique attribute phrases are sparse and do not ap-
pear for more than one image across the dataset,
we decide to only retrieve attribute phrases that
occur in at least 10 different images across DTD?,
resulting in a set of 940 frequently-used attribute
phrases to retrieve from.

Phrase to image retrieval: One can retrieve an
image from a candidate image set according to a
given attribute phrase. That is, given an attribute
phrase, retrieve the texture images from DTD? that
correspond most to the query phrase. We evaluate
this image retrieval task using fop-k recall: the per-
centage of ground-truth images that are included
in the k retrieved images.

Description generation: This task aims to gen-
erate a whole description on a given image in a
generative fashion, as opposed to retrieving from
a list of attribute phrases. We evaluate the descrip-
tion generation task on the BLEU (27) captioning
metric.

These tasks are open-ended by nature: there are
many more descriptions and attribute phrases than
the labeled ground-truth that are true for any given
image, and many more images that match with
the given descriptions than are labeled. Therefore,
qualitative visualizations are important to fully un-
derstand and evaluate the performance.

5 Methods

We investigate four different methodologies for
describing visual textures in DTD?. All models
were trained using PyTorch, running on the Gyp-
sum GPU cluster.

5.1 Discriminative Classification Model

The first baseline model we examine for the re-
trieval tasks is a classification-based approach.
Here, we frame the description task as a clas-
sification problem, where we train a discrimina-
tive model to output class scores across the 940
frequently-used attribute phrases for each DTD?
image. Given a texture image, we compute a
set of image features using an ImageNet (10)
pre-trained ResNet101 model (12). We then pass
these image features through a fully-connected
hidden layer of dimension 1024, then a final
fully-connected output layer of size 940, giving
us an output vector z € R representing the

940 attribute phrases we are predicting scores for.
The loss function used for this classifier was a
weighted binary cross entropy with logits loss,
where the weight (indicated by w;) corresponds to
the phrase frequency for each position ¢ in the out-
put vector z. The weighted binary cross entropy
loss is given by l; = —w;[t; * logo(x;) + (1 —
t;) * log (1 — o(x;))], where ¢; is the target value
for that phrase/image pair in the ground truth (1 if
the phrase is in the ground truth for that image, 0
if not), and o is the sigmoid function.

We train this model on our training split for
200 epochs using the Adam optimizer (17), with
a base learning rate of 0.001 and weight decay
set at 0.0001. Corresponding code files: mod-
els/img_encoder.py, = models/phrase_classify.py,
run/train_phrase_classify.py.

Classification models are easy to train and lend
themselves naturally to retrieval tasks, which are
the main experiments of interest in this paper.
However, this discriminative model will be unable
to generalize to new, unseen attribute phrases, as it
is limited to the phrase classes it was trained on.

5.2 Generative Language Model (Show,
Attend and Tell)

The second baseline model we have experimented
with for the texture description task is a genera-
tive language model that outputs natural language
descriptions of texture images. The training objec-
tive of this model is to learn embeddings of words
in our descriptions and output a texture “caption”
that captures the information in our ground truth
descriptions. Our base architecture for this ap-
proach is the Show, Attend and Tell (SAT) model
from (34). This is a widely used neural image
captioning model that utilizes a convolutional neu-
ral network encoder and an attention-based LSTM
(13) decoder to generate descriptions of images.
The benefit of using a generative language model
over a classification model is that it will allow us
to generalize to arbitrary unseen attribute phrases,
while the classification model can only handle a
limited set of 940 possible phrases.

We trained this language model using the
images and the full descriptions from DTD?.
We chose to freeze the weights of the image
encoder, which is an ImageNet (10) pre-trained
ResNet-101 (12) model, so it uses the same
image features as the discriminative classifi-
cation approach. That is, we only update the



parameters of the LSTM decoder at training time,
leaving the image encoder parameters frozen.
We used an initial learning rate of 0.0004 with
the Adam optimizer in PyTorch, and trained
for 11 epochs with a batch size of 64 for the
best validation set performance. Corresponding
code files: models/language_generation.py,
run_new/train_language_generation.py,
run_new/eval_language_generation.py
(these files were adapted
https://github.com/sgrvinod/

from

R2048x1024 " then perform batch normaliza-
tion and ReLU to get xj,;4 € R0,

e Pass x5, through fully-connected output
layer with weight matrix W,,; € R!1024x512
to get Ty € RO2,

Attribute Phrase Encoding Stream

e Randomly initialize an embedding for each
phrase y € R512,

e Pass each attribute phrase embedding y

a-PyTorch-Tutorial-to-Image—-Captioning)through a 1-layer recurrent neural network.

run_new/scores_language_generation.py,
run_new/evaluate_scores.py.

5.3 Bilinear RNN Classifier

The third model we experimented with on the tex-
ture description task is a bilinear model that aims
to improve the original classification approach
by learning relationships between related attribute
phrases. For example, if the model has a good
understanding of what it means for an image to
have “stripes”, and it has also seen compositional
attribute phrases such as “red stripes” or “green
stripes” before, we would like for it to use some of
its knowledge of these compositional attributes to
extend to “blue stripes” or “yellow stripes”. The
idea is that, since many of these attributes have
a compositional structure describing different as-
pects of the texture (pattern, color, etc.), we should
not necessarily train a separate classifier for each
phrase while ignoring all other phrases.

This compositional model aims to learn a
weighted “attention” over the phrases by mapping
them to an embedding space (in this case, a
recurrent neural network) and computing the
matrix product between the phrase encodings and
image encoding. We then use a classification loss
to train the model to give phrase probabilities for
each image. Through experimentation of different
architectures, the following setup gave best results
on the validation set:

Image Encoding Stream

e Pass image x through ImageNet pre-
trained ResNet-101 model to obtain
2048-dimensional image features, then

perform batch normalization and ReLU on
the features to get Tyesnet € R2048,

o Pass X, esnet through fully-connected hid-
den layer with weight matrix Wy €

Extract the hidden state of the RNN to obtain
Yemb € RP12, the encoding for each phrase.

e Arrange the 940 attribute phrase encodings
into a phrase embedding matrix Y, €
R512x940  Each column corresponds to the
RNN embedding for one phrase.

After encoding the image and attribute phrases,
we compute their matrix product, giving a 940-
dimensional output vector. Concretely, we com-
pute ¢ = TouYerp € R0, A pictorial repre-
sentation of this bilinear RNN model is shown in
Figure 3.

This model was trained with a weighted binary
cross entropy with logits loss, where the weight
(indicated by wj;) corresponds to the phrase fre-
quency for each output position ¢ in ¢. The
weighted binary cross entropy loss is given by
li = —w;[tixlog o (¢i)+(1—t;)xlog (1 — o(¢i))],
where ¢; is the target value for that phrase/image
pair in the ground truth (0 or 1), and o is the sig-
moid function.

We trained the model for 700 epochs with an
image batch size of 64 using the Adam optimizer
in PyTorch. Hyperparameters were tuned using
the validation set to measure image to phrase
and attribute to phrase retrieval, with an initial
learning rate of 0.0001 and 0.0001 weight decay.
The learning rate was decayed every 200 epochs
with gamma (multiplicative factor) set to 0.1.
Corresponding code files:
models/bilinear_compositional_models.py,
run_new/train_bilinear_classifier_rnn.py.

5.4 Bilinear BERT Classifier

The fourth and final model we experimented
with is similar to the Bilinear RNN Classifier,
but instead of using a recurrent neural network
to encode the phrases, we use the final output
layer embeddings from BERT (11). The goal of
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Figure 3: Bilinear Compositional Models. Both mod-
els embed texture images and attribute phrases in a
two-stream approach before combining their embed-
dings through their matrix product. The final output
becomes a 940-dimensional vector, which is used to
assign probabilities of the 940 phrases to the given im-
age by training with a classification cross entropy loss.
The Bilinear RNN classifier embeds the 940 raw natu-
ral language phrases using a recurrent neural network,
and the Bilinear BERT classifier obtains BERT embed-
dings for the 940 phrases and passing them through two
fully connected layers.

using BERT is that the embeddings learned in
BERT would provide a stronger starting point
for representing the natural language semantics
of the phrases, hopefully providing a better
result than training an RNN from scratch. We
pass these BERT embeddings through two fully
connected layers before computing the matrix
product between the phrase embedding matrix
and the image embeddings. Concretely, we use
the following setup for this model:

Image Encoding Stream

e Pass image x through ImageNet pre-
trained ResNet-101 model to obtain
2048-dimensional image features, then
perform batch normalization and ReL.U on
the features to get Tresner € R2048,

o Pass X, esnet through fully-connected hid-
den layer with weight matrix Wy, €
R2048x1024 " then perform batch normaliza-
tion and ReLU to get xp,;4 € R1024,

e Pass zp;q through fully-connected output
layer with weight matrix W,,; € R1024x256
to get Tour € R,

Attribute Phrase Encoding Stream

e Compute BERT embeddings by taking the
output of the last layer of BERT for each at-
tribute phrase y, then perform batch normal-
ization and ReLLU on each embedding to get
yBERT € R0 for each of the 940 attribute
phrases.

e Pass each phrase’s BERT embedding yprrr
separately through a fully-connected hidden
layer with weight matrix Wj,;q € R768%512,
then perform batch normalization and ReLU
to obtain yp,q € R°'2, the intermediate em-
bedding, for each attribute phrase.

e Pass each phrase’s yp;,q through a fully
connected output layer with weight matrix
Wout € R?, giving a 1,y € R?*°® embed-
ding for each attribute phrase.

e Arrange the 940 vy, phrase embeddings
into a phrase embedding matrix Y, €
R236x940 " Each column in this matrix cor-
responds to the encoding for one attribute
phrase.

After encoding the image and attribute phrases,
we compute their matrix product, giving a 940-
dimensional output vector. Concretely, we com-
pute ¢ = TowYems € R0, the same size out-
put as the previous bilinear RNN model. A picto-
rial representation of the bilinear BERT model is
shown in Figure 3.

This model was also trained with a weighted bi-
nary cross entropy with logits loss, the same objec-
tive as the bilinear RNN classifier. We trained this
model for 530 epochs with an image batch size of
64 using the Adam optimizer in PyTorch. Hyper-
parameters were tuned using the validation set to
measure image to phrase and attribute to phrase
retrieval, with an initial learning rate of 0.0001
and 0.0001 weight decay. The learning rate was
decayed every 200 epochs with gamma (multi-
plicative factor) set to 0.1. Corresponding code
files: models/bilinear_compositional_models.py,
run_new/train_bilinear_classifier_bert.py.

6 Experiments

All experiments in this section are carried out on
the held-out DTD? test set, described in Section
3.4.

6.1 Image to Phrase Retrieval

For our experiments, we first focus on generating
descriptions that are more detailed than existing
attributes as categories. We accomplish this by re-
trieving attribute phrases for each image that are
scored highly by the models and observing the
top-k recall on the test set. Concretely, we mea-
sure recall as:

truepositives

recall = — .
truepositives + falsenegatives



Image to Phrase Top-K Recall

Phrase to Image Top-K Recall

Figure 4: Top-k Recall Curves for Phrase Retrieval
and Image Retrieval tasks. We plot recall scores for
k = 1 to 110. The basic classifier model achieves
higher recall than the Show, Attend, and Tell model
(SAT) as well as both bilinear NLP-based models.

The phrase scores for the baseline classification
model and bilinear compositional models are ob-
tained for each image by taking the output vector
from the last layer, where each element of the vec-
tor corresponds to a score for each attribute phrase.

To get phrase scores from the Show, Attend
and Tell model, we look at the probability for
each phrase given its image encoding. The
LSTM encodes a probability distribution over
all the words in our vocabulary at each time
step given an input image x and previous words
P(yt|z,y1,92, -, y—1y). Hence, we can com-
pute the probability of any phrase y given an
image x as P(ylz) = P(yilz) = P(y2|z, y1) *
P(ys|z, y1,y2) * .. Pyl 91, - Ye—1y)-

The top-k recall results for this image to phrase
retrieval task on DTD? are shown in Figure 4.
Some representative example outputs are shown
in Figure 5. For the qualitative part of this study,
we examined 102 different query images, retriev-
ing the top 20 attribute phrases (10 visualized in
the figure) on each for all four models. From this
study, we noticed that color is an example of some-
thing that is hard to do with our current models.
For example, “black and white” is not the same
as “black” or “white”. Classification of attributes
helps provide additional information on the tex-
ture, but does not capture colors of specific things
like lines, checkers, or dots. Perhaps more data is
needed to improve performance. However, despite
the flaws of the experimental models, they perform
reasonably well in retrieving relevant phrases and
images, as seen in our qualitative visualizations.

6.2 Phrase to Image Retrieval

Another task we explore with our new dataset is
phrase to image retrieval. In this task, we retrieve
the images that score the highest when querying
on a specific attribute phrase of interest. For each

model, we retrieve the top-k images given a phrase
by ranking all the images by their output score for
that phrase. The top-k recall curves for each of the
models evaluated on phrase to image retrieval are
shown in Figure 4. Representative example out-
puts for all the models on phrase to image retrieval
are shown in Figure 6. In our qualitative study on
phrase to image retrieval, we examined 102 query
phrases and retrieved the top 20 images (4 visu-
alized in the figure) corresponding to each phrase
for all four models. We noticed that all of the mod-
els often had a hard time distinguishing the back-
ground from the foreground, such as in the “green
background” example shown in Figure 6, where
we are lucky to obtain some shades of green in our
retrieved images, but not all images have a green
background. It is also noteworthy to mention that
some phrases and visual features may actually be
easier to model with our phrase and image repre-
sentations than others. For example, a phrase like
“abstract” may be harder for the models to learn a
representation for due to its open-ended and some-
what subjective nature, while “geometric” (seen in
Figure 6) is more concrete, leading all of the mod-
els to perform better on these easier phrases.

It may be reasonable to assume that having in-
sufficient labels for these phrases would contribute
to this bad performance, as not every person who
labels each image may put the same set of phrases.
There are an infinite number of possible phrases
any person could write for a given image, as we
did not force them to select from a predefined set
of phrases in our labeling form during data collec-
tion.

Our cutoff for only evaluating phrases that oc-
cur in at least 10 different images across DTD?
helps ensure that the models have some chance to
learn relationships between the image features and
the phrases. We acknowledge that certain phrases
may be easier to learn qualities about than others
in our dataset, especially given the long-tail dis-
tribution of phrase frequency as shown in Figure
2. For example, the phrase “white” occurs signif-
icantly more across the images in the dataset than
the phrase “spotted”.

To examine the effect this long-tail distribution
has on our models, we conducted a study where
we separate the set of evaluation phrases according
to their frequency in the dataset. We split the his-
togram of phrases into 5 bins, then measure phrase
to image retrieval recall performance for all mod-



Ground Truth
Phrases

Query Texture
Image

blue, red, braided,
yellow, multi color,
twisted, knotted,
intertwined,
interwoven, white
background, equal
size, woven

bumpy, yellow,

rough, uneven,
green, fruit,
vegetable

polka-dotted, pink
| background, evenly
spaced

Classifier Phrase
Ranking

braided, twisted,
regular, soft,
colorful, red,
woven, unwrinkled,
white, blue

bumpy, green,
white, smooth,
uneven, rough,
metallic, shiny,
gray, yellow

dotted, dots, soft,
polka-dotted,
white, circles,

spotted, smooth,

unwrinkled, pink

SAT Phrase
Ranking

wooly, soft, rope,
yarn, twisted,

knitted, painting,
woven, fabric,
multicolored

bumpy, food item,
frilly, uneven, green,
bubbles, bubbly,
yellow, surface,
shiny

polka dots,
polka-dotted, cloth,
white dots, dots,
circles, pink

background, dotted,

fabric, spotted

SAT Output
Caption

blue and yellow
colored knitted
material

bumpy uneven
rough opaque dull
yellow surface

polka dotted
spotted pink white
circles

Bilinear RNN
Phrase Ranking

braided, woven,
soft, twisted,
lined, multi color,
red, regular white,
patterned

bumpy, rough,

green, yellow,
lumpy, uneven,

metallic, blue,
wrinkled, rugged

fabric, evenly
spaced, dotted,
spotted, dots,
clean, unwrinkled,
soft, pattern,
white

Bilinear BERT
Phrase Ranking

twisted, soft,
braided, blue,
white, red, yellow,
strands, black,
rough

bumpy, green,
rough, yellow,
bubbly, hard,
shiny, organic,
white, smooth

unwrinkled,
polka-dotted,
textile, dotted,
circles, pink
background, soft,
spotted, fabric,

pink

Figure 5: Image to Phrase Retrieval Results for Sample Query Images. Given an image, we retrieve the top 20
phrases with each model. The phrases are concatenated with commas and listed in descending order corresponding
to their score for each model, with the highest scoring phrase appearing first in each list. Retrieved phrases that are
also in the ground truth phrases for each image are highlighted in blue for comparison. Additionally, the generated
output caption from the Show, Attend and Tell (SAT) model is shown for each image.

els across each of the 5 bins. Fixing the number of
images we retrieve to 20, we show the recall@20
scores for each model across the 5 bins in Table 2.
These results show that the baseline classification
model performs the best on all phrase frequency
buckets, indicating that the NLP-based models do
not offer much improvement even on the more
rare phrase buckets. Additionally, it is interesting
to note that recall scores did not necessarily de-
crease when measured on bins with lower average
phrase frequency compared to bins with higher av-
erage phrase frequency. This may be explained by
the fact that some phrases are inherently easier to
understand and are more well-defined than others
(“geometric” versus “abstract”).

6.3 Description Generation

We can also generate new descriptions for texture
images using the Show, Attend and Tell model.
We do this by passing in an unseen image from the
test set into the image encoder, and passing the im-
age embedding through the LSTM decoder to ob-
tain a sequence of words using beam search. Us-
ing this setup, we report a BLEU score of 0.04645.
This is relatively low, and could be due to in-
sufficient training data as the word embeddings
passed into the LSTM were trained from scratch.
A potential improvement to this experiment could
involve initializing the word embeddings of the

LSTM with BERT. Example output captions from
the Show, Attend and Tell model (SAT) are shown
in Figure 5.

7 Application

7.1 Visualizing Textures of Fine-grained
Categories

We analyze how categories from recent FGVC
challenges (4; 5) can be described by their fextu-
ral content. The motivation is that subtle differ-
ences between species of birds or butterflies can
often be described in terms of the texture asso-
ciated with them and that several top-performing
networks are inspired by texture-based representa-
tions. These representations are characterized by
orderless pooling of second-order filter activations
such as in bilinear CNNs (Lin et al.) and the win-
ner of the iNaturalist 2018 challenge (19).

Concretely, for each category we (i) visualize
the “maximal images” by obtaining inputs x that
maximize the probability of the particular class ac-
cording to a texture-based deep network Cp(x),
and (ii) automatically describe the maximal im-
ages using a set of texture attributes. We use Cpy
as a multi-layer bilinear CNN as described in pre-
vious work on visualizing deep texture representa-
tions (21).
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Figure 6: Phrase to Image Retrieval Results for Sample Query Phrases. Given a phrase, we retrieve the top
4 images with each model. Ground truth images for each of the phrases are shown for reference. An out-of-
vocabulary phrase (“pink dots”) can be used as a query for the Show, Attend and Tell (SAT) model, as it is able to
generalize to new phrases unlike the classification-based approaches.

Avg Phrase Freq | Classifier r@20 | SAT r@20 | Bilinear RNN r@2(0 | Bilinear BERT r@20
Bin 1 300.7 0.1281 0.1011 0.112 0.1178
Bin 2 49.5 0.1476 0.13 0.1296 0.1286
Bin 3 25.1 0.1774 0.1217 0.1311 0.1328
Bin 4 16.0 0.1611 0.1181 0.1275 0.1262
Bin 5 11.3 0.1385 0.1119 0.0888 0.1012

Table 2: Results of experiment examining the effect of phrase frequency on image retrieval per-
formance. We evaluate the models’ recall performance on different bins of the test set, where each bin
corresponds to sets of phrases with varying frequencies. Bin 1 contains the highest frequency phrases,
and Bin 5 contains the lowest frequency phrases. The baseline classifier performs the best out of all the

models across all frequency bins.

Visualizing categories as maximal textures.
We visualize the categories from Caltech-UCSD
birds (35), Oxford flowers (26), FGVC flow-
ers (2), FGVC fungi (3) and FGVC butterflies
and moths (1) datasets. Following the approach
of (Lin et al.) we extract the covariance matrix fol-
lowed by signed square-root and ¢ normaliza-
tion from relu{2_2,3_3,4_3, 5_3} layers of VGG-
16 network (32) and train a softmax layer to pre-
dict class labels. We train the model on the stan-
dard training split for birds and Oxford flowers
and randomly select 100 images from the 200 cat-
egories with the most images for FGVC fungi,
flowers, and butterflies.

Let C; be the predicted probability from layer 7.
Then the maximal inverse image for a target class

C is obtained as: min, >>7, L (Ci, C’) +I(x).
Here L is the softmax loss and I'(x) is the TV
norm that acts as a smoothness prior. This tech-

nique was also used to visualize inverse images
in (24). Figure 7 show the maximal images for
various fine-grained categories along with their
texture attributes. The maximal images indicate
what discriminative texture properties are learned
from training images for classification of instances
which often appear in clutter, with wide ranges of
pose and lighting variations, and under occlusions.

Describing maximal textures. We provide the
preliminary experiments on describing these tex-
tures using attribute phrases that provide a
language-based explanation of discriminative tex-
ture properties.

Using the phrase classification model trained
on the dataset introduced in this paper, for each
maximal texture image from the fine-grained cate-
gories, we generate a “phrase cloud” showing the
top 20 attribute phrases, with the font size propor-
tional to the predicted probability.
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Figure 7: Fine-grained categories visualized as their training images (top row in each quadrant), maximal texture
images (middle row in each quadrant), and texture attributes (bottom row in each quadrant). The size of each
phrase in the cloud reflects its likelihood of being associated with the maximal texture.

As seen in Figure 7, these visualizations indi-
cate what aspects of the texture are most discrim-
inative for each fine-grained category while the
descriptions provide a language-based explanation
of the same.

8 Conclusion

Our new DTD? dataset provides a solid starting
point for examining different methods for describ-
ing texture in images with rich natural language.
Our experimental models do not currently have a
good understanding of the compositional difficul-
ties of visual textures. However, the models do
perform reasonably well when performing image
to phrase retrieval, and still decently well (though
less so) on phrase to image retrieval. Addition-
ally, we can use these models trained on DTD? to
describe fine-grained categories of different flora
and fauna using attribute phrases, giving us insight
into what discriminative properties of texture help
most in fine-grained classification.

Future work on this project will aim to explore

different image representations for texture, includ-
ing using the bilinear CNN to generate image em-
beddings as opposed to just ResNet-101. Another
modeling approach to explore would be to train
a metric learning model to minimize the distance
between texture representations and phrase em-
beddings, but there are challenges associated with
this task in choosing which negative phrases to
sample given our missing data problem (just be-
cause a phrase is not in the ground truth for an
image does not necessarily mean that it does not
apply). Describing textures in different domains,
such as fashion and home decor, would also be
a worthwhile application to explore, as images in
these domains have interesting materials, colors,
and patterns.
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